Tsinghua University
Abstract:Accurately estimating package delivery time is essential to the logistics industry, which enables reasonable work allocation and on-time service guarantee. This becomes even more necessary in mixed logistics scenarios where couriers handle a high volume of delivery and a smaller number of pickup simultaneously. However, most of the related works treat the pickup and delivery patterns on couriers' decision behavior equally, neglecting that the pickup has a greater impact on couriers' decision-making compared to the delivery due to its tighter time constraints. In such context, we have three main challenges: 1) multiple spatiotemporal factors are intricately interconnected, significantly affecting couriers' delivery behavior; 2) pickups have stricter time requirements but are limited in number, making it challenging to model their effects on couriers' delivery process; 3) couriers' spatial mobility patterns are critical determinants of their delivery behavior, but have been insufficiently explored. To deal with these, we propose TransPDT, a Transformer-based multi-task package delivery time prediction model. We first employ the Transformer encoder architecture to capture the spatio-temporal dependencies of couriers' historical travel routes and pending package sets. Then we design the pattern memory to learn the patterns of pickup in the imbalanced dataset via attention mechanism. We also set the route prediction as an auxiliary task of delivery time prediction, and incorporate the prior courier spatial movement regularities in prediction. Extensive experiments on real industry-scale datasets demonstrate the superiority of our method. A system based on TransPDT is deployed internally in JD Logistics to track more than 2000 couriers handling hundreds of thousands of packages per day in Beijing.
Abstract:Prediction of couriers' delivery timely rates in advance is essential to the logistics industry, enabling companies to take preemptive measures to ensure the normal operation of delivery services. This becomes even more critical during anomaly conditions like the epidemic outbreak, during which couriers' delivery timely rate will decline markedly and fluctuates significantly. Existing studies pay less attention to the logistics scenario. Moreover, many works focusing on prediction tasks in anomaly scenarios fail to explicitly model abnormal events, e.g., treating external factors equally with other features, resulting in great information loss. Further, since some anomalous events occur infrequently, traditional data-driven methods perform poorly in these scenarios. To deal with them, we propose a deep spatial-temporal attention model, named DeepSTA. To be specific, to avoid information loss, we design an anomaly spatio-temporal learning module that employs a recurrent neural network to model incident information. Additionally, we utilize Node2vec to model correlations between road districts, and adopt graph neural networks and long short-term memory to capture the spatial-temporal dependencies of couriers. To tackle the issue of insufficient training data in abnormal circumstances, we propose an anomaly pattern attention module that adopts a memory network for couriers' anomaly feature patterns storage via attention mechanisms. The experiments on real-world logistics datasets during the COVID-19 outbreak in 2022 show the model outperforms the best baselines by 12.11% in MAE and 13.71% in MSE, demonstrating its superior performance over multiple competitive baselines.
Abstract:The advent of Large Language Models (LLMs) holds promise for revolutionizing various fields traditionally dominated by human expertise. Urban planning, a professional discipline that fundamentally shapes our daily surroundings, is one such field heavily relying on multifaceted domain knowledge and experience of human experts. The extent to which LLMs can assist human practitioners in urban planning remains largely unexplored. In this paper, we introduce a comprehensive benchmark, UrbanPlanBench, tailored to evaluate the efficacy of LLMs in urban planning, which encompasses fundamental principles, professional knowledge, and management and regulations, aligning closely with the qualifications expected of human planners. Through extensive evaluation, we reveal a significant imbalance in the acquisition of planning knowledge among LLMs, with even the most proficient models falling short of meeting professional standards. For instance, we observe that 70% of LLMs achieve subpar performance in understanding planning regulations compared to other aspects. Besides the benchmark, we present the largest-ever supervised fine-tuning (SFT) dataset, UrbanPlanText, comprising over 30,000 instruction pairs sourced from urban planning exams and textbooks. Our findings demonstrate that fine-tuned models exhibit enhanced performance in memorization tests and comprehension of urban planning knowledge, while there exists significant room for improvement, particularly in tasks requiring domain-specific terminology and reasoning. By making our benchmark, dataset, and associated evaluation and fine-tuning toolsets publicly available at https://github.com/tsinghua-fib-lab/PlanBench, we aim to catalyze the integration of LLMs into practical urban planning, fostering a symbiotic collaboration between human expertise and machine intelligence.
Abstract:Humans can perceive and reason about spatial relationships from sequential visual observations, such as egocentric video streams. However, how pretrained models acquire such abilities, especially high-level reasoning, remains unclear. This paper introduces Embodied-R, a collaborative framework combining large-scale Vision-Language Models (VLMs) for perception and small-scale Language Models (LMs) for reasoning. Using Reinforcement Learning (RL) with a novel reward system considering think-answer logical consistency, the model achieves slow-thinking capabilities with limited computational resources. After training on only 5k embodied video samples, Embodied-R with a 3B LM matches state-of-the-art multimodal reasoning models (OpenAI-o1, Gemini-2.5-pro) on both in-distribution and out-of-distribution embodied spatial reasoning tasks. Embodied-R also exhibits emergent thinking patterns such as systematic analysis and contextual integration. We further explore research questions including response length, training on VLM, strategies for reward design, and differences in model generalization after SFT (Supervised Fine-Tuning) and RL training.
Abstract:Over the past year, the development of large language models (LLMs) has brought spatial intelligence into focus, with much attention on vision-based embodied intelligence. However, spatial intelligence spans a broader range of disciplines and scales, from navigation and urban planning to remote sensing and earth science. What are the differences and connections between spatial intelligence across these fields? In this paper, we first review human spatial cognition and its implications for spatial intelligence in LLMs. We then examine spatial memory, knowledge representations, and abstract reasoning in LLMs, highlighting their roles and connections. Finally, we analyze spatial intelligence across scales -- from embodied to urban and global levels -- following a framework that progresses from spatial memory and understanding to spatial reasoning and intelligence. Through this survey, we aim to provide insights into interdisciplinary spatial intelligence research and inspire future studies.
Abstract:Language-goal aerial navigation is a critical challenge in embodied AI, requiring UAVs to localize targets in complex environments such as urban blocks based on textual specification. Existing methods, often adapted from indoor navigation, struggle to scale due to limited field of view, semantic ambiguity among objects, and lack of structured spatial reasoning. In this work, we propose GeoNav, a geospatially aware multimodal agent to enable long-range navigation. GeoNav operates in three phases-landmark navigation, target search, and precise localization-mimicking human coarse-to-fine spatial strategies. To support such reasoning, it dynamically builds two different types of spatial memory. The first is a global but schematic cognitive map, which fuses prior textual geographic knowledge and embodied visual cues into a top-down, annotated form for fast navigation to the landmark region. The second is a local but delicate scene graph representing hierarchical spatial relationships between blocks, landmarks, and objects, which is used for definite target localization. On top of this structured representation, GeoNav employs a spatially aware, multimodal chain-of-thought prompting mechanism to enable multimodal large language models with efficient and interpretable decision-making across stages. On the CityNav urban navigation benchmark, GeoNav surpasses the current state-of-the-art by up to 12.53% in success rate and significantly improves navigation efficiency, even in hard-level tasks. Ablation studies highlight the importance of each module, showcasing how geospatial representations and coarse-to-fine reasoning enhance UAV navigation.
Abstract:LLMs as intelligent agents are being increasingly applied in scenarios where human interactions are involved, leading to a critical concern about whether LLMs are faithful to the variations in culture across regions. Several works have investigated this question in various ways, finding that there are biases present in the cultural representations of LLM outputs. To gain a more comprehensive view, in this work, we conduct the first large-scale evaluation of LLM culture assessing 20 countries' cultures and languages across ten LLMs. With a renowned cultural values questionnaire and by carefully analyzing LLM output with human ground truth scores, we thoroughly study LLMs' cultural alignment across countries and among individual models. Our findings show that the output over all models represents a moderate cultural middle ground. Given the overall skew, we propose an alignment metric, revealing that the United States is the best-aligned country and GLM-4 has the best ability to align to cultural values. Deeper investigation sheds light on the influence of model origin, prompt language, and value dimensions on cultural output. Specifically, models, regardless of where they originate, align better with the US than they do with China. The conclusions provide insight to how LLMs can be better aligned to various cultures as well as provoke further discussion of the potential for LLMs to propagate cultural bias and the need for more culturally adaptable models.
Abstract:3D Large Language Models (LLMs) leveraging spatial information in point clouds for 3D spatial reasoning attract great attention. Despite some promising results, the role of point clouds in 3D spatial reasoning remains under-explored. In this work, we comprehensively evaluate and analyze these models to answer the research question: \textit{Does point cloud truly boost the spatial reasoning capacities of 3D LLMs?} We first evaluate the spatial reasoning capacity of LLMs with different input modalities by replacing the point cloud with the visual and text counterparts. We then propose a novel 3D QA (Question-answering) benchmark, ScanReQA, that comprehensively evaluates models' understanding of binary spatial relationships. Our findings reveal several critical insights: 1) LLMs without point input could even achieve competitive performance even in a zero-shot manner; 2) existing 3D LLMs struggle to comprehend the binary spatial relationships; 3) 3D LLMs exhibit limitations in exploiting the structural coordinates in point clouds for fine-grained spatial reasoning. We think these conclusions can help the next step of 3D LLMs and also offer insights for foundation models in other modalities. We release datasets and reproducible codes in the anonymous project page: https://3d-llm.xyz.
Abstract:Large language models (LLMs) have significantly advanced autonomous software engineering, leading to a growing number of software engineering agents that assist developers in automatic program repair. Issue localization forms the basis for accurate patch generation. However, because of limitations caused by the context window length of LLMs, existing issue localization methods face challenges in balancing concise yet effective contexts and adequately comprehensive search spaces. In this paper, we introduce CoSIL, an LLM driven, simple yet powerful function level issue localization method without training or indexing. CoSIL reduces the search space through module call graphs, iteratively searches the function call graph to obtain relevant contexts, and uses context pruning to control the search direction and manage contexts effectively. Importantly, the call graph is dynamically constructed by the LLM during search, eliminating the need for pre-parsing. Experiment results demonstrate that CoSIL achieves a Top-1 localization success rate of 43 percent and 44.6 percent on SWE bench Lite and SWE bench Verified, respectively, using Qwen2.5 Coder 32B, outperforming existing methods by 8.6 to 98.2 percent. When CoSIL is applied to guide the patch generation stage, the resolved rate further improves by 9.3 to 31.5 percent.
Abstract:This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model's performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at https://github.com/Wan-Video/Wan2.1.